Image Feature Selection Based on Ant Colony Optimization

نویسندگان

  • Ling Chen
  • Bolun Chen
  • Yixin Chen
چکیده

Image feature selection (FS) is an important task which can affect the performance of image classification and recognition. In this paper, we present a feature selection algorithm based on ant colony optimization (ACO). For n features, most ACO-based feature selection methods use a complete graph with O(n) edges. However, the artificial ants in the proposed algorithm traverse on a digraph with only 2n arcs. The algorithm adopts classifier performance and the number of the selected features as heuristic information, and selects the optimal feature subset in terms of feature set size and classification performance. Experimental results on various images show that our algorithm can obtain better classification accuracy with a smaller feature set comparing to other algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy-rough Information Gain Ratio Approach to Filter-wrapper Feature Selection

Feature selection for various applications has been carried out for many years in many different research areas. However, there is a trade-off between finding feature subsets with minimum length and increasing the classification accuracy. In this paper, a filter-wrapper feature selection approach based on fuzzy-rough gain ratio is proposed to tackle this problem. As a search strategy, a modifie...

متن کامل

An Application of Ant Colony Optimization to Image Clustering

Content-based image retrieval can be dramatically improved by providing a good initial clustering of visual data. The problem of image clustering is that most current algorithms are not able to identify individual clusters that exist in different feature subspaces. In this paper, we propose a novel approach for subspace clustering based on Ant Colony Optimization and its learning mechanism. The...

متن کامل

Performance Evaluation of Content-Based Image Retrieval on Feature Optimization and Selection Using Swarm Intelligence

The diversity and applicability of swarm intelligence is increasing everyday in the fields of science and engineering. Swarm intelligence gives the features of the dynamic features optimization concept. We have used swarm intelligence for the process of feature optimization and feature selection for content-based image retrieval. The performance of content-based image retrieval faced the proble...

متن کامل

Efficient ant colony optimization for image feature selection

Feature selection (FS) is an important task which can significantly affect the performance of image classification and recognition. In this paper, we present a feature selection algorithm based on ant colony optimization (ACO). For n features, existing ACO-based feature selection methods need to traverse a complete graph with O(n) edges. However, we propose a novel algorithm in which the artifi...

متن کامل

Diagnosis of the disease using an ant colony gene selection method based on information gain ratio using fuzzy rough sets

With the advancement of metagenome data mining science has become focused on microarrays. Microarrays are datasets with a large number of genes that are usually irrelevant to the output class; hence, the process of gene selection or feature selection is essential. So, it follows that you can remove redundant genes and increase the speed and accuracy of classification. After applying the gene se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011